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ABSTRACT

With the current power of modern computers, computational modeling and fitting
has become the de facto choice in the analysis of astrophysical data. Here I present
CURVFAM (CURVature Fitting AlgoritM), a code that models a universe under a
prescribed curvature metric. Unlike current universe simulators, this code is optimized
for solely curvature modeling to conserve time and resources. Future implementations
of this code will allow for the determination of universal curvature based on real world
observations. This paper gives an overview of the scientific reasoning and formulations
behind the program as well as a look into what the future of CURVFAM will offer.

1. INTRODUCTION

The measure of an object’s flatness is solely a question of the object’s geometry. An object can
have one of three types of curvature that can have (in cases of extreme curvature) significant effects
on measurements. The three types of curvature are: flat (zero curvature), open (negative curvature),
and closed (positive curvature). On terrestrial scales, an object’s curvature can easily be measured by
observing the effects of two initially parallel lines and the sum of the interior angles of a triangle. On
a flat (euclidean) surface (e.g. a table top), parallel lines will forever run equidistant from each other
and never intersect while the interior angles of a triangle will add up to 180◦. On a closed surface
(e.g. the surface of the Earth), lines that start parallel will eventually intersect and the interior angles
of a triangle will add up to greater than 180◦. On an open surface (e.g. a saddle), parallel lines will
eventually diverge and the interior angles of a triangle will add up to less than 180◦.

In an attempt to determine the shape of the universe and how it might have evolved over time, some
groups of researchers have taken to observing the equations that govern the shape of the universe,
the Friedmann–Lemâıtre-Robertson–Walker (FLRW) metric, and analyzing the possible universal
results (Vardanyan et al. 2011; Yu & Wang 2016; Mortsell & Jonsson 2011). Attempts range from
directly attempting to solve the equations (Odintsov & Oikonomou 2019; Steiner 2007) to analyzing
many different models using statistics (Vardanyan et al. 2011).

The two main methods used for the determination of the curvature parameter K use supernovae and
the cosmic microwave background (CMB). The first method involves comparing data from supernova
surveys with solutions to the FLRW metric across various tested values for the density parameters of
matter ΩM and dark energy ΩΛ (Inserra et al. 2021; Wang et al. 2005). Alternatively, other studies
utilize power spectra of the irregularities in the CMB to statistically estimate curvature (Vardanyan
et al. 2011). While each method of determining the density parameters yields plausible results, there
is still tension in the ultimate determination of the global curvature of the universe between the
various methods (Handley 2021).
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The method of prescribing different models to the universe and statistically analyzing which fits
observed qualities of the universe better is typically used for constraining values such as the Hubble
constant (H0), the current matter density parameter (Ω0), and the current dark energy density
parameter (ΩΛ) to name a few (Inserra et al. 2021; Gupta 2019). It can, however, be extrapolated
further to analyze additional parameters or even the shape of the universe as a whole.

A new approach to determining the global structure of the universe has been gaining popularity with
the ever increasing processing power of modern computers. This approach models an entire universe
of particles and subjects them to the laws of physics allowing for the system to evolve with time. At
first, such simulations (called N-body simulations) were used to observe galaxy clustering (Aarseth
et al. 1979), but more recently, these simulations are modeling universes with trillions of particles to
high degrees of accuracy (Maksimova et al. 2021). The implications of such detailed simulations is
the ability to directly measure the desired parameters (ΩM , ΩΛ, H0) from the simulated universe.

The difficulty with the universal simulations is the amount of computational power and time re-
quired to process such large amounts of calculations. This makes the use of such simulations excessive
for solely determining curvature parameters. In the case of curvature modeling, a simulation more
specifically designed with curvature in mind might provide a more appealing option.

In this paper I present a new method for determining the global curvature of the universe. I
introduce the logical framework and baseline code for a curvature fitting algorithm (CURVFAM).
I summarize the theory behind this method in Section 2. In Section 3 I explain a lower dimension
model as a simpler introduction to the more general case. I follow this with a more comprehensive
model in Section 4. Future addendums to the code as well as streamlined processes are discussed in
Section 5 followed by a concluding summary in Section 6.

2. THEORY

There are two overarching methods to determining the properties of the universe: a bottom-up
approach and a top-down approach. In a bottom-up approach, observable values and parameters
are measured from objects existing in the universe (e.g. supernovae and quasars). A theory is then
applied to the observables to determine the properties of the universe. In a top-down approach, the
properties of the universe are assumed to be known and a value or function of values are applied to
them to determine what values the observables would take on.

Here, I apply a top-down approach to determine a curvature function for the observable universe.
I start by assuming that the curvature metric (K) can change as a function of both time and space.

K(~r, t) = Υ(~r)T (t) (1)

By prescribing a known curvature metric to a universe of test data, observables can be measured
with respect to a chosen reference point. In this case, the observables will be: perceived distance to
any object from the reference point and the measured angle formed between two observed objects
with respect to the reference point.

The important distinction to make for observations in curved space is that the distance between
any two objects is going to change depending on the curvature. As such, the apparent angle between
the two objects (from the reference point) is going to increase or decrease based on the curvature.
Figure 1 shows how objects that would be in line in euclidean space (dashed lines) would be perceived
to be separated by a different angle in curved space.
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Figure 1. Left: The observables measured from a reference point (distances: D1, D2 angle: ϕ). Right:
The difference between true positions of objects in line (dashed line) and their perceived locations in curved
space (solid line).

By determining how the observables change for a set of objects with known, fixed locations, the
dependence of observables on the curvature is shown. With the top-down model constructed, the
curvature function (Equation 1) can be optimized for a curvature that yields observables that we see
in our own universe.

3. 1-D MODEL

Before designing a model that incorporates all dimensions, I first apply the math to a simpler
one-dimensional model to see how curvature affects the observable on geometries that are easier to
both comprehend and simulate.

For a one-dimensional model, the only observable would be the distance from the reference point
along the direction of space. In euclidean space, this model would be a straight line. The curvature
metric in this model is a function position. To model this, I generate a set of uniformly distributed
points in flat space, then generate their positions in curved space by applying a prescribed curvature
function to their locations. Figure 2 shows how the positions of the objects in flat space are transcribed
as new positions in curved space.

For any one-dimensional space, the distance between any two points is given by the distance formula
for curves. Equation 2 shows the distance Di to any object Si relative to the reference point. Here
|K ′| represents the modulus of the derivative of the curvature function.

Di =

∫ Si

0

√
1 + |K ′|2 dx (2)
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Figure 2. How one-dimensional distance changes as the curvature of the space changes. In flat space the
distance traveled is a straight line, but in curved space the distance traveled is a path length along the
curvature function.

The effect of curvature on the distributions of distances is clear when the 1-D universe is populated
and given an extreme curve in the form of a polynomial. Figure 3 displays how the distribution of
distances changed from uniform spacing and density to a less uniform distribution when acted on by
curvature.

Figure 3. How the distribution of one-dimensional distances changes when curvature is applied. It is
important to note that the exact results depend on the curvature functions used.

4. COMPREHENSIVE MODEL

In transitioning to higher spatial dimensions, it is important to note that the reference point is no
longer at the zero point of a function of curvature. Rather, the reference point is now at the origin of
a three-dimensional universe that is uniformly populated with points. The universe starts flat with
the points distributed homogeneously and isotropically throughout the volume. Then, a curvature
metric is prescribed to the space. Unlike the one-dimensional case, the curvature metric here is a
series of three equations, each describing the curvature of a different spatial dimension. Equation
3 shows how the curvature metric is broken into three separate functions where Ki describes the
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curvature of space in the ith dimension. Spherical coordinates (ϕ, θ, r) are chosen due to the fact that
all observations are relative to a single reference point which I consider the origin here.

Kϕ(~r, t) = Υ(~r)T (t) (3)

Kθ(~r, t) = Υ(~r)T (t)

Kr(~r, t) = Υ(~r)T (t)

The prescribed curvature metric is applied to each point’s position vector resulting in a new primed
position vector that gives the point’s primed location in curved space with regard to the euclidean
space. Note here that while the r component of the spherical coordinates is representative of the
radial distance from the reference point, this is synonymous with time due to the finite speed of light.
Figure 4 shows how curvature causes the observed spatial distribution of points to warp.

Figure 4. How the three-dimensional uniform distribution is affected by spatial curvature. The reference
point is at the center of the distribution. It is important to note that the exact results depend on the
curvature functions used.

The degree of the effect is determined by the exact curvature that is applied to the model. In these
preliminary cases, the curvature parameter is simply a series of polynomials to display more radical
and clear results. When fitting observational data, a series of exponentials with variable coefficients
and orders would be more descriptive.

The change in spatial distribution also changes the observed angle between any two points. To
determine the effects of curvature on the observed angles, I considered every pair of two adjacent
data points. Adjacent is defined here as two points that, in flat space, lie directly next to each other
along a single dimension (x, y, z) and differ by one separation distance in only one coordinate (eg.
(1,1,1) is adjacent to (1,2,1) but is adjacent to neither (1,2,2) nor (1,3,1)). I use the angle distribution
and the average angle value for flat space as a reference against which to compare the distribution
and average angle value for the same pairs in curved space.
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Figure 5. How the distribution of angles as well as the average angle value is affected by the spatial
curvature. It is important to note that the exact results depend on the curvature functions used.

Figure 5 shows how the same curvature that was applied to produce Figure 4 affects the observed
angles between previously adjacent pairs. In flat space, the angles between pairs is a very narrow
distribution. This is expected due to the uniform nature of the points. When curvature is applied,
the distribution loses the initial uniformity and the average angle between previously adjacent points
will change. Generally this will be observed in a spreading of the distribution and an increase in the
mean angle. For the test case here, the distribution spreads out and the mean angle increases.

Figure 6. How the distribution of distances as well as the average distance value is affected by the spatial
curvature. It is important to note that the exact results depend on the curvature functions used.

The last observable to examine is the radial distance to the points. The curvature parameter is also
a function of time which is described by this distance. Figure 6 displays how curvature can effect
the apparent distance between a point and the reference point. The distance in flat space is a near
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symmetrical distribution representative of the initial cubic uniformity. When curvature is applied,
the distances to the points no longer appears as symmetrical as the initial uniformity is lost.

The program now successfully considers the observables I had set out in Section 2: the distance to
an object and the angle formed between two objects through the reference point. Now I address the
future fitting aspect of the program.

5. FUTURE IMPLEMENTATIONS

At it’s current stage, CURVFAM does not yet posses a finalized fitting component. Future versions
of CURVFAM will include a fitter that allows for the interpretation of real-world observational data.
The fitter will utilize the same top-down method of describing curvature in order to determine which
curvature parameter best fits imported observable data. The difference is that rather than applying
curvature to a set of uniform points, the observational data will represent the data points in curved
space. The fitter is then tasked with finding the best curvature functions to produce the observed
results. An additional component that will be added to future versions is the inclusion of general
relativity. When considering universal curvature, general relativity plays a significant part in the
determination of universal parameters such as density parameters and values such as the Hubble
constant. As such, the fitter will take relativity into account and return a curvature fit as well as
possible universal parameter values.

With the large amounts of data available for use publicly (Guillochon et al. 2017) as well as the
possibility of future supernovae surveys, the ability to process large amounts of data with speed and
accuracy is important. CURVFAM already demonstrates the ability to handle thousands of data
points in this current top-down state. However, with the addition of the fitting algorithm, a decrease
in efficiency is to be expected. As such, new methods of modeling as well as new fitting algorithms
will be continually tested and applied to CURVFAM.

In its current state, CURVFAM works as a client side code that must be directly modified to include
the local data files. In future implementations we will apply a more user friendly front end GUI to
help streamline data input and output. This will allow for the code to be accessed as either a package
or program without the need to directly edit the source code. Stemming off from this, even further
versions of CURVFAM can be modified to be presented in a web-based format. This will allow for
the intense calculations to be run on more efficient servers and provide additional ease-of-use for the
user.

6. CONCLUSION

In this paper I presented the current state of a continuing process towards unifying computational
modeling and universal curvature fitting. CURVFAM is a code that allows for the determination
of observables in a prescribed curved space. The implication of this is the ability to reverse this
process and find a curvature that generates the observed curved space values. With the advent of
a universe simulator designed with the sole purpose of determining curvature parameters, future
curvature measurements with new and old data alike will be faster and less computationally intense.

In its current state, CURVFAM has the ability to display the effects of various curvatures on any
chosen selection of data. This is useful in the testing of theories regarding the effects of curvature on
systems. Later versions of CURVFAM will include a statistical fitting algorithm as well as a more
user friendly GUI for streamlined data input and output. This will allow for the automated fitting of
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curvature parameters to large quantities of data. In the future, CURVFAM aims to generate a better
model of the universe and increase our understanding of its topology both in space and in time.

I wish to express my sincerest gratitude to Andrej Prša whose assistance made this project pos-
sible. A special thanks to Danielle “The Danith” Mortensen for her much needed inspiration and
encouragement. A warm appreciation to Grace for emotional support. This research has received no
additional external funding.
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